Total Pageviews

Friday, 14 June 2013

How Airplane Works Control Surfaces

ControlSurfaces.gif
Aircraft flight control surfaces allow a pilot to adjust and control the aircraft's flight attitude

Main control surfaces

The main control surfaces of a fixed-wing aircraft are attached to the airframe on hinges or tracks so they may move and thus deflect the air stream passing over them. This redirection of the air stream generates an unbalanced force to rotate the plane about the associated axis.

Ailerons

Aileron surface
Ailerons are mounted on the trailing edge of each wing near the wingtips and move in opposite directions. When the pilot moves the stick left, or turns the wheel counter-clockwise, the left aileron goes up and the right aileron goes down. A raised aileron reduces lift on that wing and a lowered one increases lift, so moving the stick left causes the left wing to drop and the right wing to rise. This causes the aircraft to roll to the left and begin to turn to the left. Centering the stick returns the ailerons to neutral maintaining the bank angle. The aircraft will continue to turn until opposite aileron motion returns the bank angle to zero to fly straight.

Elevator

An elevator is a moveable part of the horizontal stabilizer, hinged to the back of the fixed par of the horizontal tail. They move up and down together. When the pilot pulls the stick backward, the elevators go up. Pushing the stick forward causes the elevators to go down. Raised elevators push down on the tail and cause the nose to pitch up. This makes the wings fly at a higher angle of attack, which generates more lift and more drag. Centering the stick returns the elevators to neutral and stops the change of pitch. Many aircraft use a fully moveable horizontal stabilizer calledstabilator or all-moving tail. Some aircraft, such as an MD-80, use a servo tab within the elevator surface to aerodynamically move the main surface into position. The direction of travel of the control tab will thus be in a direction opposite to the main control surface. It is for this reason that an MD-80 tail looks like it has a 'split' elevator system.

Rudder

The rudder is typically mounted on the trailing edge of the vertical stabilizer, part of the empennage. When the pilot pushes the left pedal, the rudder deflects left. Pushing the right pedal causes the rudder to deflect right. Deflecting the rudder right pushes the tail left and causes the nose to yaw to the right. Centering the rudder pedals returns the rudder to neutral and stops the yaw.

Secondary effects of controls

Ailerons

The ailerons primarily control roll. Whenever lift is increased, induced drag is also increased. When the stick is moved left to roll the aircraft to the left, the right aileron is lowered which increases lift on the right wing and therefore increases induced drag on the right wing. Using ailerons causes adverse yaw, meaning the nose of the aircraft yaws in a direction opposite to the aileron application. When moving the stick to the left to bank the wings, adverse yaw moves the nose of the aircraft to the right. Adverse yaw is more pronounced for light aircraft with long wings, such as gliders. It is counteracted by the pilot with the rudder. Differential ailerons are ailerons which have been rigged such that the downgoing aileron deflects less than the upward-moving one, reducing adverse yaw.

Rudder

The rudder is a fundamental control surface, typically controlled by pedals rather than at the stick. It is the primary means of controlling yaw--the rotation of an airplane about its vertical axis. The rudder may also be called upon to counter-act the adverse yaw produced by the roll-control surfaces.

If rudder is continuously applied in level flight the aircraft will yaw initially in the direction of the applied rudder – the primary effect of rudder. After a few seconds the aircraft will tend to bank in the direction of yaw.
This arises initially from the increased speed of the wing opposite to the direction of yaw and the reduced speed of the other wing. The faster wing generates more lift and so rises, while the other wing tends to go down because of generating less lift. Continued application of rudder sustains rolling tendency because the aircraft flying at an angle to the airflow - skidding towards the forward wing. When applying right rudder in an aircraft with dihedral the left hand wing will have increased angle of attack and the right hand wing will have decreased angle of attack which will result in a roll to the right. An aircraft with anhedral will show the opposite effect. This effect of the rudder is commonly used in model aircraft where if sufficient diheral or polyhedral is included in the wing design, primary roll control such as ailerons may be omitted altogether.

Turning the aircraft

Unlike a boat, turning an aircraft is not normally carried out with the rudder. With aircraft, the turn is caused by the horizontal component of lift. The lifting force, perpendicular to the wings of the aircraft, is tilted in the direction of the intended turn by rolling the aircraft into the turn. As the bank angle is increased, the lifting force, which was previously acting only in the vertical, is split into two components: One acting vertically and one acting horizontally.
If the total lift is kept constant, the vertical component of lift will decrease. As the weight of the aircraft is unchanged, this would result in the aircraft descending if not countered. To maintain level flight requires increased positive (up) elevator to increase the angle of attack, increase the total lift generated and keep the vertical component of lift equal with the weight of the aircraft. This cannot continue indefinitely. The wings can only generate a finite amount of lift at a given air speed. As the load factor (commonly called G loading) is increased an accelerated aerodynamic stallwill occur, even though the aircraft is above its 1G stall speed.
The total lift (load factor) required to maintain level flight is directly related to the bank angle. This means that for a given airspeed, level flight can only be maintained up to a certain given angle of bank. Beyond this angle of bank, the aircraft will suffer an accelerated stall if the pilot attempts to generate enough lift to maintain level flight..

Secondary control surfaces

KLM Fokker 70, showing position of flap and liftdumpers flight controls. The liftdumpers are the lifted cream-coloured panels on the wing upper surface (in this picture there are five on the right wing). The flaps are the large drooped surfaces on the trailing edge of the wing.

Spoilers

On low drag aircraft like sailplanes, spoilers are used to disrupt airflow over the wing and greatly increase the amount of drag. This allows a glider pilot to lose altitude without gaining excessive airspeed. Spoilers are sometimes called "lift dumpers". Spoilers that can be used asymmetrically are called spoilerons and are able to affect an aircraft's roll.

Flaps

Flaps are mounted on the trailing edge on the inboard section of each wing (near the wing roots). They are deflected down to increase the effective curvature of the wing. Flaps raise the Maximum Lift Coefficient of the aircraft and therefore reduce its stalling speed. They are used during low speed, high angle of attack flight including take-off and descent for landing. Some aircraft are equipped with "flapperons", which are more commonly called "inboard ailerons. These devices function primarily as ailerons, but on some aircraft, will "droop" when the flaps are deployed, thus acting as both a flap and a roll-control inboard aileron.

Slats


Slats, also known as leading edge devices, are extensions to the front of a wing for lift augmentation, and are intended to reduce the stalling speed by altering the airflow over the wing. Slats may be fixed or retractable - fixed slats (e.g. as on the Fieseler Fi 156 Storch) give excellent slow speed and STOL capabilities, but compromise higher speed performance. Retractable slats, as seen on most airliners, provide reduced stalling speed for take-off and landing, but are retracted for cruising.

Air brakes

Air brakes on the rear fuselage of aEurowings BAe 146-300
Air brakes are used to increase drag. Spoilers might act as air brakes, but are not pure air brakes as they also function as lift-dumpers or in some cases as roll control surfaces. Air brakes are usually surfaces that deflect outwards from the fuselage (in most cases symmetrically on opposing sides) into the airstream in order to increase form-drag. As they are in most cases located elsewhere on the aircraft, they do not directly affect the lift generated by the wing. Their purpose is to slow down the aircraft. They are particularly useful when a high rate of descent is required or the aircraft needs to be retarded. They are common on high performance military aircraft as well as civilian aircraft, especially those lacking reverse thrust capability.

No comments:

Post a Comment